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ABSTRACT

A simple model is presented for gas inflow through a disk galaxy driven by

interacting galaxies through the action of a non-axisymmetric disturbance

acting on the disk whose gas is modelled as an ensemble of gas clouds. Cloud

collisions, as well as being a vital process in forcing gas inflow to the

centre of the disk, are also assumed to generate massive stars. This ever

increasing rate of gas flow toward the centre of the galaxy and the associated

rapid increase in cloud collisions leads to a centrally concentrated starburst.

Starbursts have important consequences for the immediate environment of

galaxies. Mildly collimated outflows can be driven by a combination of

multiple supernovae and OB star winds. Jets associated with activity in the

galactic nucleus can interact strongly with a starburst environment.

Physical mechanisms proposed for qeneratin_ starbursts and active nuclei

via feeding the monster are rather similar and a strong inference is that

starbursts and activity are intimately related. Among the obvious evolutionary

implications are that powerful infrared sources could be forming a siqnificant

part of their central stellar mass--which is galaxy formation in action--a

relatively delayed and hidden process. Furthermore, quasar-like nuclei

embedded in such objects as Arp 220 will he powerful infrared sources until the

gas and dust is depleted either by ejection and/or by transformation to stars.

I. INTRODUCTION

The remarkable observations of starburst systems discussed at this meeting

require at least some theoretical modelling. The analysis I discuss here is

quite simplified but may lead to some more physical insight. It will be

assumed that it is necessary to explain why companions and mergers trigger

starbursts, what skews the mass functions to predominantly OB stars in these

systems, what drives the observed outflows, what is the relation between

activity and starbursts? In addition we will discuss the implications of the

infrared observations for theories of galaxy formation and quasar activity and

for the metal enrichment of the intracluster medium.

II. INTERACTION DRIVEN INFLOW

Consider a normal disk galaxy with a significant gas content, say an Sc

galaxy, and apply a significant perturbation to it in the form of a companion,

bar, oval distortion or infallinq or merging dwarf galaxy. Assume the pre-
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existing stars provide a background potential and that the gas distribution is

described as a mean cloud ensemble that can undergo various dissipative

processes such as collisions, coagulation, disruption, fragmentation etc. To

illustrate the relevant physics here we will simplify this system further by

assuming the perturbation is a linear (_I0%) non-axisymmetric distortion, cloud

orbits can be described as test particles with drag and cloud collisions are

the sources of the drag as well as providing the massive star formation mode.

The technique used to calculate the response is to follow the elegant

stellar dynamical formulation of this problem by Lynden-Bell and Kalnajs (1971)

and butcher it by adding a collisional drag component to some of the stars that

are then called clouds. The general linear non-axisymmetric distortion is

Fourier decomposed into spiral modes, a transformation is made to action angle

variables, it is assumed the dominant collisional damping is on the radial

action and the long wavelenqth limit is taken. The rate of change of angular

momentum at any qiven radius in the disk is given by

2_ m 2 k2S2(_ - _ )

<_> = P (1)

(m(9 + 9 _ _]2 + y2) (m (_ + 9 + _)2 + y2]
P P

where S is the potential wave amplitude, k is its radial wave number, y is the

drag collisional rate, _ in the rotation frequency of the disk, _ is the wave

pattern speed, K is the epicyclic frequency and m is the number o_ arms

associated with the perturbation (Norman 1984). The change of sign of the

effect at corotation when 9 = 9 is obvious, as is the crucial dependence of

<h> on the presence of both thePcloud collisions and the presence of the

perturbing wave. Physically, the clouds lead to the bar or general wave

perturbation inside corotation by an angle that is of order y. This is just

the forced oscillator with drag response problem, where the drag gives a phase

shift. These leading clouds form a system that is torqued down by the action

of the corresponding stellar bar thus losing angular momentum and having the

clouds move inwards• Outside corotation the clouds move outwards since the

effect changes sign. This simple analysis fits the numerical simulations done

by Schwarz (1981) and Combes and Gerin (1985)• Away from resonances, which is

the general case, the inflow velocities can be written, at radius R,

2 _ -[_

V r _ 2y m2R [kR] 2 [--_R2] [----_-_]
(2)

for k # 0,and for k = 0

9
v _ 2ym2R[ [
r

(3)

Once again we see that the combination of enhanced cloud collisions and large

amplitude perturbations will give greatly enhanced inflow. To estimate

timescales we need to establish the nature of the drag. There are two cases

here. If the drag is due to collisions with backgroqnd clouds the inflow

velocity will increase exponentially with time as e t/T , and secondly if the

drag is due to collision with other large clouds the temporal behaviour will be

• ]-Ias (1 - t/T) -I The timescale T = 1/y is obtained from a [ncl Ocl Vcl

396



STAR FORMATION AND DYNAMICS IN STARBURST NUCLEI

estimate and here taking quantities relevant to the central region of ARP 220

we find a timescale of 2 x 107 yr, and for a normal Sc N 109 yr, when in both

cases a wave perturbation of order NI0% is assumed. Thus the mechanism is

efficient and roughly fits even the rapid inflow rates required for

starbursts. For Arp 220 there are also interesting implications for star

formation and the details of the estimate for T are found in the following

section.

III. STAR FORMATION IN STARBURSTS

The question here is what is the physical process that skews the mass

function to high mass only?? Theories are very ambiguous here. For example,

in another high pressure environment such as a cooling flow it supposed that

only low mass stars form. Low mass star formation ma___ybe inhibited by shear,

turbulence or magnetic fields but ma___yis the relevant word here. The approach

I will take here is to base the model on powerful observationally based

arguments presented by Scoville (this meeting) that cloud-cloud collisions

generate massive OB stars, and by clouds it is generally meant molecular

clouds. Taking relevant parameters for Arp 220 to be 1010 M® of gas in the

inner 3 kpc and assuming 10 _ M_ per cloud and a cloud radius of 5 pc and a

velocity dispersion of 20 km s _I and a wave amplitude of 10% and a star

formation efficiency of _10% we get T N 2 x 10- years in the previous section

and a rate of OB star formation of _I02 0B stars per year!

Cloud collisions rates can be significantly enhanced by the presence of

bars and ovals that generate shocks and give substantial orbit crossings. In

the central regions of triaxial systems there are many box orbits that have

plunging radial trajectories with the possibility for much orbit crossing. In

syste_with strong central mass concentrations stochastic orbits can develop

and these orbits wander stochastically around the central region greatly

increasing the collision rate. This effect will be very significant for ratios

of black holes (in other central mass concentrations) to core masses of order

10 -3 to 10 -I (Norman and May 1984).

IV. OUTFLC_S FROM STARBURSTS

Outflows from starbursts systems seem ubiquitous (Heckman, these

proceedings). The mechanical energy and momentum input is clearly very

substantial. For a supernova rate of 1-10 yr -I one finds a luminosity L _ q

1043 erg s -I in an outflow where q is an efficiency factor. There are several

ways to model these outflows. Chevalier and Clegg (1985) have given a

spherical wind model with a wind velocity of order VW _ 2000 km s -1 at 200 pc

and a terminal cloud velocity of V t _400 [(1021 cm-2)/(Ncl)] I/2 km s -I. The x-

ray emitting gas is produced by shocked clouds and filaments in the wind

itself. Wind or explosion driven shell propagation and evolution has been

studied by various authors (c.f. Sakashita and Hanami 1986, Norman 1986 plus

references). A mild, wide-angled collimation of order 30-40 ° is found and

various evolutionary sequences can be seen as the shell is embedded in and

bursts out of the disk. These various stages can be compared with the data

(Heckman, Sofue, this conference). In the final state we expect a steady state

wind propagating in a core between two shock waves at the long edge of the core

and a massive molecular ring in the disk at the boundaries of the outflow
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region. The opening angle of the core is of order the inverse Mach number of

the flow at one disk scale height. Shocked clouds, bullets and filaments will

give the coronal x-rays and optical lines. Molecular lines may well be

observed in these outflows. The Galactic Centre itself has many of these

properties (Pudritz_ Norman and Heyvaerts 1986) if associated with a relatively
small starburst _I0" - 108 years ago.

The metallicity content of these outflows is rather interesting. A

supernova rate of 1-10 supernovae per year producing approximately I M® of iron
per supernova over a burst lifetime of _I08 years gives an injected iron mass

of 108 - 109 M8 of Fe into the intracluster or intergalactic medium. We assume
the gas does not coo1 and supernovae bubbles intersect before significant

cooling at such high supernovae remnant densities found in starburst systems.

This is a very significant metallicity input to the intra cluster or

intergalactic medium. One needs of order greater than 1010-11 M8 of processed

material per luminous L, galaxy injected into the intracluster medium

(Henriksen 1985) to explain the metallicity of the intracluster medium. If the

starburst outflow were ubiquitous in the early stages of cluster evolution this

could solve the metallicity of clusters problem, essentially due to the

distorted initial mass function of starbursts.

IV. ACTIVITY AND STARBURSTS

There are many ways in which starbursts and activity can be related and

here I will briefly note a few of these. Jets can certainly trigger star

formation as is discussed in the context of Minkowski's object by van Bruegel

et al (1985) and Centaurus A (de Young 1981). Jet pressures are high compared

to interstellar medium pressures

Ljet "] I (100 pc) 2 04 -I 2
P. _ 10-9 I 042 -1 A ) 11 km s ) dyne cm- (4)
3et I ergs jet Vjet

where L. , A _ and v are the jet luminosity, shear and velocity. The over
3et 3et ]et

pressure induced by a ]et striking a cloud is very similar to the effect of a

cloud-cloud collision and can therefore probably trigger massive OB star

formation. In this picture clouds can either orbit into a jet or be struck by

a jet propagating through the interstellar medium.

The structure of the molecular clouds and the interstellar medium can be

significantly affected by the prescence of activity. For example the

ionization balance in molecular clouds in the central region can be changed by

more than an order of magnitude if a powerful central x-ray source is

present. This can substantially lengthen the ambipolar diffusion time and

possibly lead to more massive star formation (Silk and Norman 1983).

The presence of starbursts can feed the monster creating the active

nucleus. Massive OB stars on radial box orbits or stochastic orbits can plunge

toward the central black hole and accretion disk on timescales of order a core

crossing time which is less than the time to evolve to a supernova. Thus high

pressure and other direct mass injection processes can occur due to the action

of starburst generated supernovae exploding near the central object. More

generally, the processes discussed here for fuelling starbars_ are the same as
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those for fuelling quasars. Recall that for powerful quasars one needs 10-100

M_ yr -I and, conversely, it is difficult to see how such prodigious mass

i_flows could avoid forminq stars!

V. SUMMARY

A model has been presented where the action of a companion on a gas-rich

spiral galaxy can induce mass inflow rates typical of those required for Arp

220 and a starburst rate of massive OB star formation of N10-I02 per year where

it is assumed cloud collisons trigger the massive star formation mode.

Supernovae and OB star wind driven outflows were discussed and various

evolutionary stages were noted. The outflows would be significantly metal

enhanced and could provide the major source of metals to the intracluster

medium.

Starbursts and activity are intimately related--it is difficult to

conceive of one without the other in massive gas rich system with central black

holes. Massive starbursters appear to be forming a significant fraction of

their central stellar mass. This is indeed galaxy formation by any other

name. The process is apparently hidden by dust and occurs in bursts! Any

quasar embedded in such a system would be quite successfully shrouded until the

dust is removed. Arp 220 seems an excellent example. These points learned

from the infrared work must be kept in mind when discussing both galaxy

formation and quasar evolution.

It is a pleasure to acknowledge stimulating conversations with T. Heckman,

J. Heyvaerts, R. Pudritz and N. Scoville.
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DISCUSSION

SCOVILLE:

The size of 3 kpc assumed for the gas distribution in Arp 220 is consistent with the new Owens Valley

Interferometer maps of the CO as will be presented by Anneila Sargent tomorrow.

NORMAN:

Sounds good to me!

BURBIDGE:

You say that with a black hole and a starburst all of the phenomena can be explained. But how about a

prediction? Which comes first, and how do these systems evolve?

NORMAN:

Good question. I have tried to answer this in the text.
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